On Walker 4-manifolds with pseudo bi-Hermitian structures

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic 4-manifolds with Hermitian Weyl Tensor

It is proved that any compact almost Kähler, Einstein 4-manifold whose fundamental form is a root of the Weyl tensor is necessarily Kähler.

متن کامل

G-structures Defined on Pseudo-riemannian Manifolds

Concepts and techniques from the theory of G-structures of higher order are applied to the study of certain structures (volume forms, conformal structures, linear connections and projective structures) defined on a pseudo-Riemannian manifold. Several relationships between the structures involved have been investigated. The operations allowed on G-structures, such as intersection, inclusion, red...

متن کامل

Some Four-dimensional Almost Hypercomplex Pseudo-hermitian Manifolds

In the study of almost hypercomplex manifolds the Hermitian metrics are well known. The parallel study of almost hypercomplex manifolds with skewHermitian metrics is in progress of development 6, 7. Let (M,H) be an almost hypercomplex manifold, i.e. M is a 4n-dimensional differentiable manifold and H is a triple (J1, J2, J3) of anticommuting almost complex structures, where J3 = J1 ◦ J2 8,2. A ...

متن کامل

Complex Monge-Ampère Operators in Analysis and Pseudo-Hermitian Manifolds∗

The paper is a short survey around the author’s recent works on topics related to complex Monge-Ampère equations and strictly pseudoconvex pseudo-Hermitian manifolds. 1. Invariant differential operators In complex analysis of one variable, the fact that the invariant property for Laplace operator under holomorphic change of coordinates plays an important role. Namely, Let φ : D1 → D2 be a holom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS

سال: 2019

ISSN: 1303-6149

DOI: 10.3906/mat-1902-68